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inequalities 

N Angelescu, M Bundaru and G Costache 
Institute of Physics and Nuclear Engineering, Bucharest, PO Box 5206, Romania 

Received 29 January 1979 

Abstract. The asymptotics of the state of ihe n-vector model with a finite number of spins in 
the spherical limit is studied. Besides re-deriving the limit of the free energy, corresponding 
to a generalised spherical model (with ‘spherical constraint’ at every site), we also obtain the 
limit of the correlation functions, which allows a precise definition of the state of the latter 
model. Correlation inequalities are proved for ferromagnetic interactions in the asymptotic 
regime. In particular, it is shown that the generalised spherical model fulfils the expected 
Grifiths-type inequalities, differing in this respect from the spherical model with overall 
constraint. 

1. Introduction 

A powerful method for studying models of statistical mechanics consists of the 
exploitation of correlation inequalities. Its fruitfulness has been fully revealed in the 
case of ferromagnetic king models, for which a large variety of such inequalities is 
available (see e.g. Griffiths 1972, Sylvester 1976 and references therein). In the last few 
years, a great deal of consideration has been given to deriving analogous inequalities for 
ferromagnetic classical n-vector models with n > 1. Ginibre (1970) settled the n = 2 
case, while recently Dunlop (1976) and Kunz et al(1976) have been able to exploit the 
cases n = 1 , 2  to provide, for n = 3,4, besides Griffiths-type inequalities for correlations 
involving only one spin component, new inequalities for correlations between different 
spin components. However, even for n = 3,4,  the proof of some natural correlation 
inequalities is still an open problem. As the only result known for all n seems to be that 
of Pearce and Thompson (1976) on the Ising-like n-vector model, while the isotropic 
n-vector model is completely unexplored for n >4 ,  and in view of the difficulties 
encountered in such a study, it should be interesting to see, at least, to what extent these 
(and what other kind of) inequalities are valid in the large-n limit. It is principally to this 
latter problem that we devote this paper. Naturally we are lead to consider the 
asymptotic study of the spherical (n + CO) limit of the isotropic n-vector model in an 
external magnetic field, not only for the free energy (which, in fact, has been already 
done by Knops (1973) and Pearce and Thompson (1977), who obtain, as limit of the 
free energy per spin component, the free energy of the generalised spherical model of 
Bettoney and Mazo (1970)), but also for the correlation functions. This is known as l / n  
expansion for the correlation functions. The idea originates in the paper by Abe (1973), 
but the only rigorous result in this direction (concerning, however, only the limit of the 
magnetisation) seems to be contained in the paper by Pearce and Thompson (1977). 
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Our main result is that the expected Griffiths-type inequalities, including the 
concavity of the magnetisation, hold in the asymptotic region. This shows that the 
generalised spherical model has the expected normal behaviour, in contrast to the usual 
spherical model of Berlin and Kac (1952) for which anomalies appear (see e.g. Barber 
and Fisher 1973, Pearce 1976). Particular cases of Griffiths inequalities for the 
generalised spherical models of films have previously been obtained by Costache 
(1977), who makes a detailed study of the thermodynamics of the model as well. 

The paper is organised as follows. In § 2 the models under consideration (n-vector, 
Gaussian and spherical) are defined, the notation made precise, and a suitable 
representation of the n-vector partition function given. Section 3 contains the asymp- 
totic study of the n-vector correlations. Some technical details and the proof of an 
analytic version of the steepest-descents method, which is the core of the argument for 
the asymptotic development, are relegated to appendixes 1-3. In 0 4 the correlation 
inequalities are proved on the basis of a result on M-matrices, which might present some 
interest in itself. 

2. The models 

We shall describe here the models under consideration. They all consist of a finite 
number of ‘spins’, labelled by an italic letter (i, j ,  k or I), taking on integer values 
1 , 2 , .  . . , N. Their number, N, will be held fixed throughout the paper. 

Real- or complex-valued functions of the spin index i, considered as vectors in R N  
or C N  will be denoted byboldface letters h = (hl, . . . , hN). C N  is given the usual scalar 
product: (h,  h’) = X E l  hihi. MN(R)(MN(C)) is the space of N x N real (complex) 
matrices, considered as operators on CN.  We shall denote M k ( R ) ( M k ( C ) )  the 
subspace of those J E M N ( R ) ( M N ( C ) )  satisfying 

Jij = 0, 11 119 i, j =  1 , 2 , .  . . , N, (2.1) J . .  = J.. 

and choose {J i j ;  1 s i < j s N} as coordinates on Mk.  
Functions of the spin index i with values in R“(C“),  considered as vectors in 

RNn(CNn) ,  will be denoted by boldface letters with an arrow, I =  (.&, . . . , &). The 
coordinates of 8 E R “  will be labelled by superscript Greek indices p, Y, . . . . For our 
purposes it will be convenient to view 8 as a collection of n elements of C”, (@, p = 
1, . . . , n, where 87 is the p coordinate of 8.. 

2.1. The isotropic n-vector model 

The phase space is 

S, ={a = ,..., E R N ~ I  (U:)’ = n, i = 1, . . . , N I  
r = l  

(i.e. all configurations of N n-dimensional ’spins’ of length n l”), with its natural 
measure dwn (a) induced by Lebesgue measure d&. The interaction energy is 

n 

’=l 
X(6; J, 8) = - 1 [~(Ju’,  U ’ )  + ( f” ,  U’ ) ] ,  

where the interaction matrixJ E M k ( R ) ,  and RNn is a distribution of magnetic fields 
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6 at every spin site i. The partition function is 

zn(J, g) = J' exp(-Px(G; J, 8)) dCcn(~)  (p = (keT)-'). (2.3) 

Occasionally, we shall make J and icomplex (maintaining relations (2.1)). Thereby, 
clearly, Zn(J, g) is analytic and does not vanish on M g ( R )  x R"'. 

We shall in fact be concerned only with a particular kind of configuration of 
magnetic fields: all 6 along the same direction, namely the diagonal of R"(C") .  We 
agree to denote throughout the paper by 6 such a distribution of magnetic fields, and by 
h the common value of all h'. 

S" 

In this case the free energy will be denoted 

Fn(J, h)=-p-'lgZ,(J, li) (2.4) 

and will be an analytic function on M k ( R )  x R N .  

sequence of all the truncated correlation functions 
The equilibrium state of the model, characterised by p, J, 6, is defined by the 

Here 0 is an arbitrary subset of component indices, and A, are finite non-void 
collections of site indices. The usual (non-truncated) correlation functions will be 
denoted without the superscript 'T'. 

Owing to the choice of i, the n-vector model Hamiltonian (2.2) is invariant under 
the permutation of spin components. This is reflected in the correlation functions as 
well, e.g. ( u ? ) ( ~ )  is independent of p, (~?a;)(") takes on only two values for any given 
i, j ,  depending on whether g = U or ,U # v, and so on. 

Special attention will be paid to those combinations of correlation functions which 
appear as derivatives of the free energy per spin component ( l /n)F, (J ,  h ) ,  such as the 
local magnetisation 

and the local susceptibilities 

(2.7) 

2.2. The Gaussian model 

The phase space is R N  (i.e. all configurations of N one-dimensional 'spins' of arbitrary 
length) with Lebesgue measure d a .  For a given interaction matrix J E ML(R) ,  we 
define 

D, = {y  E R ~ ~ X  = r - J > 0, rij = yisij}. (2.8) 

The partition function, for a positive definite X E MN(R), a magmtic field distribution 
h e R N  and an inverse temperature p, is 

Q(X, h )  = J exp{-p[$(Xa, a) - (h, a) -8 tr XI} d a .  (2.9) 
RN 
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It will be convenient to write X as r -J, with J E M k ( R )  and r a diagonal matrix with 
diagonal vector y E Dj. 

Again X and h can be made complex, and Q(X, h )  will thereby be analytic on 
{X E MN(C)IX~~ = Xji, Re X > 0} x C" and given by 

Q(X, h )  = det (pX/2~)- ' "  exp{(P/2)[(X-'h, i )  + tr XI}. (2.9') 

The truncated correlation functions which define the equilibrium state are 

(2.10) 

where A is a finite sequence of site indices. 

2.3. The generalised spherical model 

This model is defined from the Gaussian model above by making a certain choice of y 
depending on J and h : y is to be determined from the following system of equations, 

(X-l)ii = p[l-  (X-'h)f], i = l , 2  ,..., N,  (2.1 1) 

which can be viewed either as a minimum condition for Q(X, h )  considered as a 
function of y E Dj, or as a set of ('individual spherical') constraints on the random vector 
U E R ~ :  

( r f )  = 1 ,  i = l , .  . . , N. (2.11') 

The system (2.1 1) has a unique solution: yo(J, A )  E Dj. 
Indeed, Q(X, h )  is a strictly log-convex function of y on the convex domain Dj. This 

can be checked directly on the Hessian matrix 

Hij(X, h )  = lg Q(X, h ) / a y i  ayj = ~(X- ' )z+p(X- 'h) i (X- ' ) i j (X- 'h) j ,  (2.12) 

which is obviously strictly positive definite for y E Dj. (The Schur product of strictly 
positive definite matrices is strictly positive definite.) Moreover, lim lg Q(X, h )  = CO for 
Y -, ~ D J  or llyll+ CO. 

J and h can be made complex as above; the implicit function theorem and the 
continuity of H assure then that: There exists a complex neighbourhood of M k ( R )  x 
R N  on which the solution yo(J, h )  defined above extends analytically and Re  H > 0. 

From now on we agree to denote always by y o  this solution of the system (2.1 l ) ,  by 
To the diagonal matrix with diagonal vector yo, by (. . .);f the correlation functions of the 
Gaussian model (2.10) for X = X o = r o - J ,  and by Qo(J, h )  the Gaussian model 
partition function at X = Xo(J, h ) ,  viewed as a function of (J, h).  

The generalised spherical model is thus defined by postulating the following 
expression for its free energy: 

Fo(J, h )  = -p-' lg Qo(J, h).  (2.13) 

We shall see that the appropriate definitions of the local magnetisations and 
susceptibilities are respectively 

m?(J, h )  = -aFo(J, h)/ahi = (Xi 'h), ,  (2.14) 

x;(J ,  h )=amP(J ,  h)/ahj=(Xo')ij-P(Xo'MoHo'MoXo')ij, (2.15) 
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where MO is the diagonal matrix with diagonal vector mo, and Ho = H(X0, h ) .  In 
obtaining (2.14) and (2.15) use has been made of the minimum condition (2.11). 

We conclude this section by giving a certain representation of Zn(J, &, which proves 
to be very useful in studying the behaviour of the n-vector model when n becomes large. 
This representation has already been used in a similar context (Stanley 1968, Abe 1973, 
Joyce 1973 and references therein). We shall, however, include a proof, to provide the 
missing details necessary to make rigorous the usual derivation by means of the 
&function representation. 

F o r e v e r y J E M g ( C ) , t E C "  and n 2 3 :  

(2.16) 

where T is the diagonal matrix with diagonal t, and y E CN is arbitrary as long as 
ReX>O.  

Proof. For p E Rf: let 
n 

G E R ~ " I I  ( a r ) 2 = p i , i = 1  ,..., 
*=l 

Let @: R N  + C be defined by 

where dp,(G) is the natural measure on S,,. Clearly, @(n, . . . , n) = Zn(J, 5). @ ( p )  is 
continuous and integrable, and its Fourier transform &(t) is also integrable for n 5 3. 
The latter fact can be seen by calculating d explicitly and by majorising l&l, using the 
inequalities in appendices 1 and 2; however, for n B 5 ,  the following simple argument 
can be used: as @ ( p )  -p!n-2"2 for pi LO, we have 

so 
N 

1&(r)l s constant x n (1 + E L ~ ( R ~ ) .  
i = l  

Applying a well-known result on the inversion of the Fourier transform (Stein and 
Weiss 1971), one can write 

N 
@(n7 . . . , n)  =  IT)-^/^ jRN exp( in zl tJ &(t) dt, 

which leads, after a few calculations, to (2.16). 

3. The asymptotics of the isotropic n-vector model for large n 

The purpose of this section is to give a detailed description of the state of the n-vector 
model when n +W. As already stated, we have chosen to formulate the results for 
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'equally distributed' magnetic fields 6 =  ( h " ) :  h" = h, Vp.  It should be stressed that a 
definite ansutz concerning the direction and strength of the magnetic fields as n varies 
should by all means be done, in order to give sense to the n +CO limit; the picture 
depends strongly, though in a foreseen way, on this ansatz. 

The results are as follows: 
(1) For every fixed finite set R of component indices, the truncated correlation 

functions (l lWE0 (llieA, L T ; ) ) ' " ) ~  (where A, are arbitrary non-void finite collections of 
site indices) have asymptotic series in powers of n-l as n + 00. In particular, their n + 00 

limit exists and equals ( l l i s A , ~ i ) ; f  if R consists of only one element, p, and zero 
otherwise. 

For further reference we shall also write down the n-' corrections for the simplest 
correlation functions: 

(a7)'"' = (ai)o- (2np)-'(a/ahi) Ig det Ho+ O(n-2), (3.1) 

(3.2) 
a a a ((+yur(+pk)(n)T= (na2) - ' (  8 " p - - ( x , ' ) i j + 8 p p - ( ( x ~ '  ahi  ) j k  + 6 p , - ( x , ' ) k , >  ah, +O(?'-2) .  

ahk 
(3.3) 

(2) The free energy per spin component (l/n)F,(J, h )  has an asymptotic series in 
powers of n -' for every (J ,  h )  E M k ( R )  x R N. Explicitly, to order n-' 

( l /n)F,(J,  h )  =Fo(J ,  h)+(2pn)- '  I g d e t ( 2 7 ~ ~ - ' H ~ ) + O ( n - ~ ) .  (3.4) 

Term-by-term derivatives with respect to J, h of this series yield asymptotic series for 
the corresponding correlation functions of the n-vector model. For instance, putting 
aside mi"' for which (3.1) is again obtained, one has 

Igdet Ho+O(n-2) ,  (3.5) 
a2 xi, ( n )  -xi,-(2pn)-'- - 0 

ahiah, 

(3.7) 

where the definitions (2.6),  (2.7), (2.14), (2.15) have been used. 
One can see from result (1) that, loosely speaking, the state of the n-vector model 

converges to the product state of an infinite number of copies of Gaussian models 
satisfying the minimum condition (2.1 1). These copies of Gaussian models are coupled 
only in higher-order corrections; it is not too difficult to see that the first non-zero term 
in the asymptotic series of (IT+.n (niEA, uY))(")* is at most of the order n ' - I n ' ,  where 
is the number of points of R. 

Result (2) is meant to make precise the sense in which the n-vector model converges 
to a generalised spherical model. Namely, certain 'mean values' of correlation 
functions are selected (those which can be obtained through derivations of the free 
energy with respect to h and J )  which converge in the limit; their limits are the 
corresponding derivatives of the generalised spherical model free energy and can be 
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used to define the 'correlation functions' (or state) of that model. Result (2) should be 
contained in ( l ) ,  and in fact is, but there is no easy way of showing this explicitly, 
because higher-order terms of the asymptotic series in (I) contribute non-vanishingly to 
a certain fixed-order term in the asymptotic series in (2). 

Thus our description of the spherical limit of the n-vector model (with a fixed 
number of spins) is far more complete than that given in previous approaches (Abe 
1973, Knops 1973, Pearce and Thompson 1977), in that all n-vector correlations to 
arbitrary order in n-l are studied in the limit, and the state of the spherical model is well 
defined in terms of these. It is perhaps useful, before starting the formal proof, to 
outline the general argument providing the above results. 

Both statements can be formulated as the convergence of a sequence of functions 
and of all their derivatives. The functions in question can be extended analytically to a 
common complex domain, and this kind of convergence will follow from uniform 
convergence on this domain. Uniform convergence follows in turn from an analytic 
version of the steepest-descents method, which, for the reader's convenience, is proved 
in appendix 3. 

Proof of (1). According to (2.5), the truncated correlation functions can be obtained by 
taking logarithmic derivatives with respect to 4 of lg G,(g) at l=  0, where 

G,(& =Z,(J,  i+&Q(Xo,  h))-"+In' (3.8) 

is an entire function in 5" E C", p E SZ. Using the representation (2.16) we have 

Taking advantage of the fact that Q(Xo+iT, h +&) is bounded away from zero as a 
function of f E R N ,  as seen from its analytic form (2.9') and using the estimates (A1.2) 
and (A2. l ) ,  we introduce the following notations, 

in terms of which 

(3.9') 

This is already of the form entering in the proposition in appendix 3, withf, g having the 
required analyticity properties. Clearly, f ( 0 )  = 0, aif (0)  = 0 by the minimum condition 
(2.11), and - d i d j f ( 0 )  = (H& (given by equation (2.12) at X =Xo) is positive definite. 
As Re g is bounded above as a function of f E R N  uniformly for g in  compacts of C'"", 
we are left only to show that, with D, defined in (A3.1), I R ~ , D ,  Jexp nf(r)l dr falls off 
more rapidly than any inverse power of n. Indeed, taking into account that XO is 
self-adjoint, inequality (A2.1) (written for Y =Xi1)  gives 
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where a = ~ ~ X o ~ ~ - i ,  while inequality (Al . l )  gives 

l e x p { p / 2 [ ( ~ o + i ~ ) - ' - ~ o l  Ih, h } l ~  I ,  

from which 

Thus, by the proposition in appendix 3, we conclude that Gn(& has an asymptotic series 
uniformly for s' in compacts of Cln". As the first term of this series, 

is bounded away from zero, we can conclude that Ig G, has in turn an asymptotic series 
uniformly in Consequently, all its derivatives at g=O have asymptotic series 
obtained by term-by-term derivation of the series of lg G,. In particular, the limit of 
truncated correlation functions follows from the logarithm of the function (3.11) and 
has the form given in the statement. Straightforward calculations provide also formulae 
(3.1) -( 3.3). 

Proof of (2). As remarked in P 2, Qo(J, h )  extends analytically and has no zeros in a 
certain complex neighbourhood of M k ( R )  x R N .  Thus 

I l ln(J, h ) E Z n ( J ,  L)Qo(J, h)-" (3.12) 

are analytic functions of J, h in this neighbourhood for all n. 
Define 

(3.13) 

which is analytic in (t, J, h )  on a complex neighbourhood of R N  X M k ( R )  x R N ,  
because, in view of (A1.2) and (A2.1), Q(Xo+iT, h)/Q(Xo, h )  is bounded away from 
zero, and satisfies f(0; J, 8 )  = 0, dif(O; J, h )  = 0. Thus 

Illn (J, h 1 = (g) I ,  exp(n f ( t ; J, h 1) d t, (3.14) 

and the result (2) will follow from appendix 3, provided we can show that uniformly for 
(J, A )  in a compact neighbourhood of every point in M % ( R )  x R N  

r 

p = 1 , 2 , .  . . . (3.15) 

To this aim, choose a neighbourhood V of the given point in M k ( R )  x R such that 
Re  W(Xo, h )  2 c > 0 on VI. Then, one can choose E > 0 such that Re H(Xo + iT, h )  L 

4 2  for {[ti l  < E, i = 1, . . . , N } =  D ( E ) .  For n sufficiently large, D, c D ( E ) ,  and we shall 
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divide the integration domain as (RN\D(e)) U (D(E)\D,). For t E D(E)\D,, making use 
of 

1 1 

f ( t ;  J, h )  = -1 (T d a  Io d7(H(Xo + imT, h)t ,  t ) ,  
0 

we have 

C I lexp(nf(t; J, h))l d t c  I exp( -Elltl12) 4 d t c  CN exp(--(lg 4 n)'>. 
D(c)\D. R ~ \ D ,  

Outside DE, at least one [til exceeds E .  Using the results in appendices 1 and 2, 

with KL1 for llIm hJI+O and llImXoll+O, and where one can choose p L f l  and a 
bounded away from zero in the same limit. Thus one can determine a neighbourhood 
V2 c V1 on which K'< 1, and consequently (3.15) is fulfilled. 

From now on the proof proceeds along the same lines as for (1). 

4. Correlation inequalities in the spherical limit 

In this section we shall restrict ourselves to considering ferromagnetic interactions and 
prove in this case that certain correlation inequalities hold in the large-n limit of the 
n-vector model. Such a study might suggest, when combined with known results for 
small n (commented upon in 0 l), what kind of correlation functions of the n-vector 
model can be expected to satisfy Griffiths-type inequalities for all n. 

Let us first state precisely the assumptions: 
(a)  Isotropic, 'strictly' ferromagnetic interactions, i.e. 

J E MO", Jii L 0, (eJ)ij > 0, i,j=l, . . . ,  N. (4.1) 

The last condition means that every two spins i, j feel each other, i.e. there is a sequence 
I = io, i1,. . . , ip ,  ip+l = j ,  such that Jikik+l > 0 for k = 0,.  . . , p .  This is by no means a 
restriction of the generality, as otherwise the system decouples into non-interacting 
subsystems. 

. . .  

( 6 )  Positive, 'equally distributed' magnetic fields, i.e. 

h = h E R ", hi 20, i = 1, . . . , N. (4.2) 

The results are as follows: 
(3) The n-vector correlation functions containing only one spin component satisfy, 

for n sufficiently large, the inequalities 

(4.3) 
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On the other hand, for p # v, card A and card B s 2 and n sufficiently large, 

(4.6) 

However, if card A =card B = 2, we are able to prove (4.6) only for sufficiently 

(4) The n-vector correlation functions obtained as derivatives of (l/n)F,(J, h )  
small h. 

satisfy, for n sufficiently large, the inequalities 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.1 1) 

where again (4.11) is proved only for small h. 
Inequalities (4.3), (4.7) and (4.4), (4.8), (4.9), (4.11) are natural generalisations of 

the first and second GKS inequalities, while (4.5), (4.10) are related to the concavity of 
the magnetisation. All these inequalities, except for ( 4 3 ,  (4.10), (4.11), are known to 
hold for n s 4  (cf Dunlop 1976, Kunz er a1 1976 and references therein). As far as we 
know, (4.5) is known only for n = 1 (Griffiths et a1 1970), and (4.11) only for n = 1 , 2  
(Ginibre 1970). Inequalities (4.3), (4.4) are also known for the extremely anisotropic 
n-vector model with arbitrary n (Pearce and Thompson 1976). 

The proof of (3) and (4) will consist of showing that certain matrices have positive 
entries. At this point, the argument relies heavily on the concept of the M-matrix, of 
which, for the reader's convenience, we shall recall some equivalent definitions and 
derive certain related propositions (which could be interesting by themselves and might 
possibly present some novelty). 

Let d c M N ( R )  be the class of matrices having non-positive off-diagonal entries. 
Equivalently, d = { A  E MN(R)/(e-"\),, 3 0, Vi, j = 1, . . . , N, Vr > O}.  

Definition. A E d is called an M-matrix if it satisfies one of the following equivalent 
conditions : 

(i) A is non-singular and A-' has non-negative entries. 
(ii) There exists 5 E R N  with 6; > 0, i = 1, . , . , N, such that (A&)i > 0, i = 1, . . . , N. 

(iii) 
(iv) (e-")ji converges to zero as t + 00, i, j = 1, . . . , N. 
It is immediately obvious that (i) implies (ii) and (iii) implies (iv). Making use of the 

are integrable functions of t on [0, a), i, j = 1, . . . , N. 

matrix identity 

1 - e-'A = A e-TA d7 = (4.12) I,' 
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one can see that from (iv) it follows that A ji e-TA dT is non-singular, so A itself is 
non-singular. Letting t + 00 in (4.12) one obtains A-' = 5," e-TA d7, which has non- 
negative entries. Thus (iv) implies (i). To see that (ii) implies (iii) one applies (4.12) to 
the vector 5. As (e-"@i > 0 and (e-TAAt)i dT are increasing functions of t, it follows 
that (e-'A&)j are integrable functions on CO, 003. As (A&)j > 0 for all i = 1, . . . , N, (iii) is 
proved. 

As for self-adjoint A, (iii) is implied by the positive definiteness of A ;  we have as an 
immediate consequence that, under conditions (4.1), X = r - J  is an M-matrix as soon 
as y E DJ. In particular, 

(X-l)i j  > 0, i, j=1,. . . , N .  (4.13) 

Lemma. Let X E M N ( R )  be a self-adjoint M-matrix satisfying (4.13). Then 
(a) The matrix Q defined by 

i,j=1, . . . ,  N, 
1 N 

Qjj = xjk (x-* j, 
k = l  (X-'h)k 

(4.14) 

where h # 0 is an arbitrary vector with hi 3 0, i = 1, . . . , N, is an M-matrix. Moreover, 
(Q- l ) j j  > O  for all i, j, unless h is of the form hk =asks for some s, in which case 
( Q - ' ) i S  = 0, ( Q - ' ) k i  > 0 for all i # s, and all k. 

(b) The matrix P defined by 

(P-l)ij = (X-l); . ,  i, j = 1, . . . , N (4.15) 

is an M-matrix. 

Proof. ( a )  We shall firstly show that Q E d. Indeed, using Schwartz's inequality 

and the fact that x k  # j x;' lxki I = x,'xii - sjj, one arrives at 

which shows that Q E d. Next we have to find a vector f with ti > 0, i = 1, . . . , N, for 
which > 0, i = 1, . . . , N. That such a vector exists there is evident owing to X 
being an M-matrix. Finally, Qji # 0 for all i # j (implying (Q- l ) j j  > 0, as seen from 
Q-' =I," exp(-TQ) d7) if at least one of the inequalities above is strict. Indeed Qis = 0 
implies (from having equality in Schwartz inequality) that 

N 

whence hr = a&, + bXli, but also hi = 0, whence b = 0. In this case, Qks = 0 for all k # s, 
and Qki < 0 for all k # j, j # s, which leads as above to the statement. 

(b) The equivalence (i)-(ii) of the above definition of an M-matrix implies that Q-' 
has only non-negative entries. Choosing in particular hi = Si,, i = 1, . . . , N, it means 
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that, for any i, I ,  k = 1,2,  . . . , N, Z j  P i & i l X i ;  2 0. Multiplying this inequality by 
Xkl(k  # I )  and summing over k gives 
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p,,x;;' - &,XI1 c 0, 

showing that P is an M-matrix (recall that P-' has only positive entries). 

We are now prepared to prove results (3) and (4). In view of (1) and (2), these will 
follow from the corresponding inequalities for the first non-zero term of the asymptotic 
series. For simplicity, we shall assume that at least two of the components of h are 
non-zero; there is, however, sufficient information about Q-' in point ( a )  of the lemma 
to cover the case of one non-vanishing component also. 

Proof of (3). Inequalities (4.3) and (4.4) for the Gaussian model are proved in Leff 
(1971), the main ingredient being supplied by (4.13). The LHS of (4.5) has an 
asymptotic series starting in the order n-', given by (3.3), if h # 0, and vanishes 
identically if h = 0. As 

we have only to show that, for all 1, k = 1, . . . , N and h # 0, 

ay? 
-= P(Ho'M&o' )1k = p[(xOMo'HO)-']Ik = P[( !~QO+PMO)- ' I~~  >o, 
ah, 

(4.16) 

where Qo is defined by (4.14) in terms of Xo. This is obvious, as Qo is an M-matrix by 
the lemma and MO is diagonal and with positive diagonal. 

Inequality (4.6) contains three cases, in all of them the asymptotic series starting 
with n-l terms if h # 0: 

(i) Card A = card B = 1 ;  this follows from (3.2), (4.16) and (Ho)i j  > 0. 
(ii) Card A = 2, card B = 1 ; this follows by expressing the LHS in terms of truncated 

correlation functions, from (3.3) and the former case. 
In both cases (i) and (ii), if h = 0 the LHS vanishes identically for n L 3, owing to the 

rotational invariance. This is not the case, however, for case (iii), where in fact we shall 
give the proof only for h = 0. 

(iii) Card A = card B = 2, h = 0: 

(,?,CLaY,I 11 12 I1 12 ) (n)- ( ,?s?)) '" ' ( ,Y,Y 11 12 I1 12 ) ( " ) l h , O  
= (U : $;la y2 )(" )TI h = 0 

As for h = 0, (HO)kl = & X i 1  ):I, point ( a )  of the lemma ensures that the sum over 1 is 
positive for all k ,  jl, j z ,  which finishes the proof. 

Proof of ( 4 ) .  (4.7) is a particular case of (4.3). The LHS of (4.8) converges to ,& 
equation (2.15), which can be put into the form 

= [WO + 2 ~ ~ o ~ o ~ o ) - ' I , j ,  (4.17) 
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where we denote PO' the Schur square of X i ' ,  on which the inequality is obvious, as Po 
is an M-matrix by point (b) of the lemma. In proving (4.9) one can again suppose h # 0 
(because for h = 0, m'"' = 0 for all J ) ,  and the limiting value is 

(4.18) 

As, by the lemma, XoMO'Ho is an M-matrix, (4.18) is positive.? 
The limit of (4.10) is (consider again only h # 0) 

ax:/ahk = -[xO(a(xO)-'/ah~)xOlij, 

and, because ay?/ahk > 0, we have only to prove that 

[x 'Mo(aPo/a hk )Max 'Iij = -[x 'MOPO(~(P, '/a hk )POMOX~];~ > 0. 

But PoMoxo has positive elements by the lemma (and equation (4.17)), and aPi'/ahk 
has negative elements by explicit calculation. 

The limit of (4.11) for b = 0 is 

P.4"1 I 

( f (Hi' ) p q ( x i '  ) q k ( X i l  )ql), 
q = 1  

which is positive by the same argument as for (4.18). 

5. Concluding remarks 

We have obtained, in 3: 3, asymptotic developments of the n-vector correlations for 
finite systems. We leave open the problem of the validity of a similar development in 
the thermodynamic limit. Much caution is necessary when trying to extend our results 
to infinite systems. Indeed, the proof of result (1) shows that an asymptotic expansion 
holds also for 

without imposing Z= 0 in the end. Thus, for instance, taking for simplicity 6 = 0 and 
(7 = &jM1, the magnetisation of the n-vector model will converge for n + CD to 

t If, however, hk = a&, amg/aJii = 0. But also amj"'/aAi = 0 in this case, because f(+$;) = 
dp"(6') exp(-b%(ci, J ;  O)), where 6 = (3, cis), is independent of GS by rotational invariance. 
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N - ' t  (Xg')ij, where yo is determined from the constraint (Xi')ii = p, which is 
independent of 6. Choosing J translationally invariant, one can perform the ther- 
modynamic limit of the limiting magnetisation, and this will eventually turn out to be 
infinite for p greater than pc of the spherical model, while for p < pc it will be a linear 
function of 6, leading as expected to spontaneous magnetisation equal to zero. On the 
other hand, there exist proofs (Pearce and Thompson 1977) showing that the n-vector 
magnetisation converges for n, N --f 00 to the thermodynamic limit of N-' E.fi my. This 
shows the difficulties to be expected when studying the asymptotics of the state of the 
n-vector model for n, N + 00 simultaneously. Technically, these should be reflected by 
the fact that the thermodynamic limit generally shrinks the analytical domain of G, (g), 
and one cannot expect uniform convergence as analytic functions to hold. Thus one can 
at most hope that result (2) might be extended to the thermodynamic limit of correlation 
functions. 

Griffiths-type inequalities have been proved, in 8 4, for the n-vector correlations in 
the large-n limit. In particular, it has been shown that the generalised spherical model 
obeys these inequalities. This is not true for the usual spherical model with overall 
constraint, where a counter-example is available (Pearce 1976). 

It would be interesting to check on the asymptotic series in 8 4 whether certain 
correlation functions are monotonic functions of n, at least in the large-n region, which 
in turn would imply monotonic convergence of the critical temperature of the n-vector 
model to that of a spherical model. This could be accomplished by looking at the next 
term of the asymptotic series, which is somewhat more difficult and will be left for 
further consideration. Let us only remark here that such monotonicity properties have 
already been looked for by Stadey (1969), and partial results, though for a differently 
scaled n-vector model, obtained; e.g. inequalities between n = 1 and 2 or between 
these and an arbitrary n (cf Thompson 1973, Bricmont 1976, Kunz et a1 1976), or the 
monotonicity of the two-point function for the periodic one-dimensional model (cf 
Milosevic er a1 1970). 
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Appendix 1 

Let X = X l + i x 2 ~ M N ( C )  with X l , X 2  self-adjoint and X1>O. Let T € M N ( C )  be 
self-adjoint and h = hl  C N  with hl,  h2 real. Then 

Re{[(X +iT)-' -X-'lh, 41blI 11-X;' 11 llhzl/+ ~ ~ ~ ~ ~ 2 ~ ~ x ~ '  /1311x*1?. ( A l . l )  

so, majorising the norm of the sum with the sum of the norms, and using 11(1+ iA)-'JJ 1 
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for self-adjoint A, we have 
1/2 2 I ~ ( x  +iT)-' - X - ' I I  s 211~; 11 = ~ 1 1 ~ ; '  I). (A1.2) 

On the other hand, as Re(1 +iA)-' = (1 +A2)-' = 1 -A2(1 +A2)-' for self-adjoint A, 
we have 

Re[(X +iT)-' -X-'] 

= x;'I2 [[(x;1/2x2x;1/2)2[1 + (x;'/2X2x;'/2)2]-' - [x;'/2 (X, + T)x;'/2 

S x;'x2x;'x,x;' 
S llK1 11311x2112, 

x (1 + (XZ + T)X;'/' 12}-']X;"2 

whence (Al . l )  follows. 

Appendix 2 

For a, b > 0, let 

.d&,b={Y= Yl+iY2EMN(C)/Yl=YT s a ,  Y2=Y;,(IY2IISb}. 

For every O S p  <az / ( a2+b2)  andeverya2Sa2-pb2/(1-p) ,  the followinginequal- 
ity holds for Y E  &a,b and T = T* E M N ( C ) :  

(A2.1) 2 2 1/2 Ide t ( l+ iTY)Isde t (p+a  T )  . 

Proof. Using det(1 +BA) =det( l  +AB), A, B EMN(C),  we can write det(1 +iTY) = 
det[l+ Y:/2TY:/2(i- Y;1/2Y2Y;1/2)]. Thus, for l < A  < l + a 2 / b 2 ,  we have 

/det(l +iTY)J2 

= det[ 1 + Y :"T( Yl + Y2 Y;' Y2)TY :I2 - 2 Re( Y :/'TU2 Y;'l2 )] 

z=det{l -A-'+ Y:/2T[Yl -(A - 1)Y2YT1 Y2]TY:/2) 
z=det[l-A-'+{a -[(A -1)/~]11Y~11~}Y~ 1/2 T 2 Y:"] 

=detu1 -A-'+{a -[(A - l)/a]llY$}TYITJJ 

z=det{l - A - ' + [ a 2 - ( A  - 1)11Y~11~]T~}, 

where the monotonicity of det on positive matrices and the matrix inequality 2 Re A G 
A -' +AAA* have been used. 

Appendix 3 

Let V = CM be a compact neighbourhood and f, g: R N  x V +. C be analytic functions 
of ( f ,  z )  in W x V, where W is a certain neighbourhood of t = 0. Suppose that, for all 
Z E  V, f(O,z)=O, aif(O,z)=0 ( i = l , .  . . , N )  and the matrix Hij(z)=-aiaif(O,z) 
(i, j = 1, . . . , N )  satisfies Re H ( z )  3 a > 0 (here ai means a / a t i ) .  Suppose moreover 
that, with 

(A3.1) D, = { t E  RNI Itil< n-'" lg n, i = 1 , .  . . , N } ,  
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one has, for all p > 0, 

IRN exp(nf(t, 2) + g ( t ,  z ) )  dt  (A3.3) 
NI2 (Ln(z)=n 

has an asymptotic series in powers of n-l as n + CO, uniformly for z E V. 

Proof. Clearly, the asymptotic series does not change if the integration domain in 
(A3.3) is restricted to D,. Therefore one has to consider 

I exp(nf(n-1/2r, z )  +g(n-'12r, 2)) dr  
nl"Dn 

with the obvious definitions for f ( ~ ,  z ) ,  g ' ( ~ ,  z )  which are analytic on D, x V (D,  c W 
for n sufficiently large), with power series in T around T = 0 starting with third- and 
first-order terms respectively. The derivative of the order k with respect to n-''2 of 
nf(n-'12t, z )  + g'(n-'12t, z )  is bounded uniformly on (!, z )  E n 'l2Dn x V, by 
constant(k) . (Ig n ) k + 2 .  Therefore the same derivative of exp(nf+ g') is bounded on the 
same domain by constant(k) . (lg n)3k ,  and the following Taylor expansion holds 
uniformly on n1l2Dn x V :  

exp(nf(n-1/2t, z )  +g'(n-'"t, z ) )  
3 k + l  = Ql(t ,  z)n-'" + O{[n-1/2(1g n) ] ) 

/=0 

where Q1 are polynomials in t, with Q1(-t, z )  = (-l)'Ql(t, z ) .  On the other hand, 

s constant(l) . exp[-$a(lg n12]. 

Denoting 

(A3.4) 

(A3.5) 

which is the desired result. 
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